Novel method for studying myelination in vivo reveals that EDTA is a potent inhibitor of myelin protein and mRNA expression during development of the rat sciatic nerve.
نویسندگان
چکیده
To probe the effects of possible inhibitors or enhancers of in vivo myelination, we have modified a technique widely used in studies of the developing neuromuscular system that involves incorporation of test compounds into a silicon rubber solution, which solidifies on contact with air. U-shaped rubber implants are inserted around the sciatic nerve of 1-day-old rats and left in place for 24-48 h. Sections from the region of the nerve lying within the implant, with or without the test compound, are then immunolabeled, examined with in situ hybridization or electron microscopy. Application of EDTA (440 microg/implant) in this way strongly suppressed the levels of the myelin-associated molecules protein P0, myelin basic protein (MBP), and galactocerebroside (Galc). mRNA levels for P0 and the myelin-related transcription factor Krox-20 were also reduced, further supporting association of the EDTA-induced effect with the myelinating Schwann cells. In contrast, no obvious differences were observed in either neurofilament (NF) protein or glial fibrillary acidic protein (GFAP) expression, suggesting absence of influence on axons or nonmyelinating Schwann cells. Despite the severely altered molecular composition of myelin in the presence of EDTA, examination in the electron microscope did not reveal any apparent ultrastructural changes in the myelin sheaths or nerve development. This work introduces a novel method for studying nerve development and shows that EDTA, which chelates divalent cations such as Ca(2+) and Mg(2+), strongly and selectively reduces levels of molecules, which, on postnatal days 1-4, are expressed in myelinating cells at much higher levels than in cells not engaged in myelination.
منابع مشابه
Deprenyl changes the expression of Trk-B and P75 NTR receptors in rat after sciatic nerve axotomy
During development many of neurons die by the phenomenon named programmed cell death or apoptosis and this reaction is regulated by neurotrophin (BDNF, NGF, NT3 and NT4/5). These neurotrophins bind to two different classes of transmembrane receptor proteins, the Trks and P75 NTR. Axotomy can induce apoptosis after birth and deprenyl is a an inhibitor of monoamineoxidase type-B and seems to act ...
متن کاملDeprenyl changes the expression of Trk-B and P75 NTR receptors in rat after sciatic nerve axotomy
During development many of neurons die by the phenomenon named programmed cell death or apoptosis and this reaction is regulated by neurotrophin (BDNF, NGF, NT3 and NT4/5). These neurotrophins bind to two different classes of transmembrane receptor proteins, the Trks and P75 NTR. Axotomy can induce apoptosis after birth and deprenyl is a an inhibitor of monoamineoxidase type-B and seems to act ...
متن کاملThe role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves
The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...
متن کاملThe role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves
The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...
متن کاملIn Vivo Gene Transfer to Schwann Cells in the Rodent Sciatic Nerve by Electroporation
The formation of the myelin sheath by Schwann cells (SCs) is essential for rapid conduction of nerve impulses along axons in the peripheral nervous system. SC-selective genetic manipulation in living animals is a powerful technique for studying the molecular and cellular mechanisms of SC myelination and demyelination in vivo. While knockout/knockin and transgenic mice are powerful tools for stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Glia
دوره 48 2 شماره
صفحات -
تاریخ انتشار 2004